Alignment and Prediction of cis-Regulatory Modules Based on a Probabilistic Model of Evolution

نویسندگان

  • Xin He
  • Xu Ling
  • Saurabh Sinha
چکیده

Cross-species comparison has emerged as a powerful paradigm for predicting cis-regulatory modules (CRMs) and understanding their evolution. The comparison requires reliable sequence alignment, which remains a challenging task for less conserved noncoding sequences. Furthermore, the existing models of DNA sequence evolution generally do not explicitly treat the special properties of CRM sequences. To address these limitations, we propose a model of CRM evolution that captures different modes of evolution of functional transcription factor binding sites (TFBSs) and the background sequences. A particularly novel aspect of our work is a probabilistic model of gains and losses of TFBSs, a process being recognized as an important part of regulatory sequence evolution. We present a computational framework that uses this model to solve the problems of CRM alignment and prediction. Our alignment method is similar to existing methods of statistical alignment but uses the conserved binding sites to improve alignment. Our CRM prediction method deals with the inherent uncertainties of binding site annotations and sequence alignment in a probabilistic framework. In simulated as well as real data, we demonstrate that our program is able to improve both alignment and prediction of CRM sequences over several state-of-the-art methods. Finally, we used alignments produced by our program to study binding site conservation in genome-wide binding data of key transcription factors in the Drosophila blastoderm, with two intriguing results: (i) the factor-bound sequences are under strong evolutionary constraints even if their neighboring genes are not expressed in the blastoderm and (ii) binding sites in distal bound sequences (relative to transcription start sites) tend to be more conserved than those in proximal regions. Our approach is implemented as software, EMMA (Evolutionary Model-based cis-regulatory Module Analysis), ready to be applied in a broad biological context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MORPH: Probabilistic Alignment Combined with Hidden Markov Models of cis-Regulatory Modules

The discovery and analysis of cis-regulatory modules (CRMs) in metazoan genomes is crucial for understanding the transcriptional control of development and many other biological processes. Cross-species sequence comparison holds much promise for improving computational prediction of CRMs, for elucidating their binding site composition, and for understanding how they evolve. Current methods for ...

متن کامل

Supporting Information for: Alignment and Prediction of cis-Regulatory Modules Based on a Probabilistic Model of Evolution

To compute the transition probability of indels, we make two simplifications that have often been made, for example [1]: first, the insertion and deletion rates are low so that the probability of an insertion event in time t is roughly λt (instead of the exact value 1−e), and similarly for deletion events; second, we ignore possible “multiple-hits” at one position, in other words, we will expla...

متن کامل

Comparative Genomic Motif Detection via Multi-Resolution Phylogenetic Shadowing

Functional turnover of transcription factor binding sites (TFBS), such as whole-motif loss or gain, are common events during genome evolution. Conventional probabilistic phylogenetic shadowing methods model the evolution of genomes only at nucleotide level, and lack the ability to capture the evolutionary dynamics of functional turnover of aligned sequence entities. As a result, comparative gen...

متن کامل

SMCis: An Effective Algorithm for Discovery of Cis-Regulatory Modules

The discovery of cis-regulatory modules (CRMs) is a challenging problem in computational biology. Limited by the difficulty of using an HMM to model dependent features in transcriptional regulatory sequences (TRSs), the probabilistic modeling methods based on HMMs cannot accurately represent the distance between regulatory elements in TRSs and are cumbersome to model the prevailing dependencies...

متن کامل

CSMET: Comparative Genomic Motif Detection via Multi-Resolution Phylogenetic Shadowing

Functional turnover of transcription factor binding sites (TFBSs), such as whole-motif loss or gain, are common events during genome evolution. Conventional probabilistic phylogenetic shadowing methods model the evolution of genomes only at nucleotide level, and lack the ability to capture the evolutionary dynamics of functional turnover of aligned sequence entities. As a result, comparative ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009